Steam Tracing Calculator

Heat Loss Estimation & Condensate Load (ISO 12241 Methodology)

1. System Geometry

mm
m

2. Process Conditions

Β°C
Β°C
m/s

3. Steam Supply

bar g
%
Total Condensate Load (Design)
-- kg/hr
Heat Loss per Meter
-- W/m
Specific Steam Load
-- kg/hr/m
Pipe OD (NPS) --
Insulation System OD --
Temp Differential (ΔT) --
Steam Saturation Temp (Tsat) --
Latent Heat (hfg) --

Technical Notes

Variable Definitions

  • Q/L (W/m): Heat loss per unit length of pipe.
  • Tm vs Ta: Maintain vs Ambient temperature. The driving force is ΔT.
  • Safety Factor: Multiplier applied to steady-state load for trap sizing and startup margin.

Formulas (ISO 12241)

  • Heat Loss (per meter): Qβ€² = (2π·ΔT) / ( ln(rβ‚‚/r₁)/k + 1/(hextΒ·rβ‚‚) )
  • Steam load: ṁ = (Qβ€²Β·3.6)/hfg (kg/hΒ·m)
  • External convection (screening): hconv β‰ˆ 5 + 3.9Β·v (W/mΒ²Β·K, v in m/s)

Standards & Data Sources

  • ISO 12241: Insulation heat transfer methodology (cylindrical conduction + external convection/radiation).
  • ASME B36.10: Process pipe outside diameters (OD database used for surface area).
  • Steam properties: Saturation temperature (Tsat) and latent heat (hfg) via internal table interpolation (engineering screening).
  • Insulation k: Typical design thermal conductivity values; confirm final k with vendor datasheet at mean temperature.

Assumptions

  • Steady-state heat transfer.
  • Steam is dry saturated (quality = 1.0).
  • Pipe wall resistance is negligible compared to insulation.
  • Insulation dry and intact (no moisture ingress).
πŸͺ We use cookies to improve your experience. Learn more